A stratified sampling technique based on correlation feature selection method for heart disease risk prediction system

نویسندگان

  • Lalita Sharma
  • Vineet Khanna
چکیده

In medical, data mining method can be utilized by the physicians to improve clinical diagnosis. In this paper a stratified approach named Correlation Feature Selection Stratified Sampling (CFS-SS) has been introduced. This method is applied to medical diagnosis heart disease risk prediction system. By using this proposed system the attributes are grouped together into homogenous sub groups, before sampling the strata will be mutually exclusive, every attribute will be assigned to only one stratum. The original dataset is given to the filter Correlation based feature selection (CFS) system. The output of the system will be the efficiently achieved without stratified sampling. Stratified sampling of all the sub sets are put together in such a manner that subset of same group size will be in one group by using CFS-SS. The efficiency of proposed system (CFS-SS) is better than existing system (CFS). Key wordsCFS, CFS-SS, SVM, NB & DT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Heart Disease Risk Prediction System Based On Novel Technique Stratified Sampling

Medical decision support systems are designed to support clinicians in their diagnosis. The prediction of heart disease pattern with classification algorithms is proposed in this paper. It is essential to find the best fit feature selection algorithm that has greater accuracy on classification in the case of heart disease classification. By using feature selection method the dimensionality of t...

متن کامل

Neuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements

In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...

متن کامل

Selecting effective features from Phonocardiography by Genetic Algorithm based on Pearson`s Coefficients Correlation

The heart is one of the most important organs in the body, which is responsible for pumping blood into the valvular systems. Beside, heart valve disorders are one of the leading causes of death in the world. These disorders are complications in the heart valves that cause the valves to deform or damage, and as a result, the sounds caused by their opening and closing compared to a healthy heart....

متن کامل

Proposing an Intelligent Monitoring System for Early Prediction of Need for Intubation among COVID-19 Hospitalized Patients

Introduction: Predicting acute respiratory insufficiency due to coronavirus disease 2019 (COVID-19) can diminish the severe complications and mortality associated with the disease. This study aimed to develop an intelligent system based on machine learning (ML) models for frontline clinicians to effectively triage high-risk patients and prioritize who needs mechanical intubation (MI). Material...

متن کامل

Evaluation of Classifiers in Software Fault-Proneness Prediction

Reliability of software counts on its fault-prone modules. This means that the less software consists of fault-prone units the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of software, it will be possible to judge the software reliability. In predicting software fault-prone modules, one of the contributing features is software metric by which one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014